Virtualization made easy
with MLN

Kyrre Begnum - kyrre@iu.hio.no

README

* Introduction to virtualization (Xen, UML)
* Challenges we face often

 MLN, and how it may solve them

Break

 Examples and demos
c Q&A

Intended Audience

 Technicians and researchers who want to
learn how to use virtualization as a test-bed

» People who want to use virtualization but find
it difficult

« Students who wish to experiment with larger
networks on their own machines

Virtualization

* The abllity to run one or more isolated
operating systems “on top” of another.

— Xen, User-Mode Linux, Vmware, Virtual
PC, Qemu

* The virtual machine has the ability to be
either isolated or a part of the LAN

UML and Xen

Both are two open source virtual machine platforms with

their own strengths

User-Mode Linux

« A specialized Linux kernel

runs as binary

No root access required
Flexible

Slow compared to others

Xen

* More powerfull platform
« Can support different
operating systems

* Impressive performance
* Requires root access

« Complicated

Proposed benefits

Financial savings

Logistic benefits

Live migration of virtual machines
Security through partitioning

More interesting student assignments
Faster to set up

Increased control and convenience

Challenges

Requires a high technical skill level

Monitoring and management

Designing large networks of virtual
machines

Filesystems need to be hand-configured

How can they be solved?

* Our approach

— A configuration language for virtual
machines

— Logical groups of virtual machines are
grouped into projects

— A tool that would parse the configurations
and act on the projects

MLN

A management front-end for virtual
machines

Supports both Xen and User-Mode
Linux

Easy-to-use configuration language

Used first time to create lab networks
for a Firewall/IDS course in 2004

MLN projects

A project can consist of more one or more virtual
machines and ethernet switches.

__

project tutorial

Here, two hosts - fish and
. chips - are connected via a
host fish { . switch called lan.

network eth0 {
switch lan

switch lan { }

}
}

host chips {
network eth0 {
switch lan

Configuration range

Guest OS Language

» Networking interfaces and switches . Superclasses

« Users and groups « Variables

 Startup commands * Plug-ins can extend the
« Additional files that should be copied language

into the filesystem

Physical server

Interface
« Extra partitions to mount « Start and stop entire projects
« Number of CPUs to use (Xen) * Upgrade running projects
» Filesystem backend Build across several servers

Background console or xterm
Virtualization platform
Memory and filesystem size

Superclasses

giebal { | . Superclasses allow for
project tutorial | _ _
} . configurations of hosts to be
superclass common { ConSiStent and tO save
memory 64M :
free space 1000M Space

template ubuntu-server.ext3
network eth0 {

switch lan

netmask 255.255.255.0

}
}
host fish { i1 host chips {
superclass common “ superclass common
network eth0 { ii network eth0 {
address 10.0.0.1 K address 10.0.0.2
} i }

__

Variables

You can use variables to keep information consistent
across keywords

global { |

project tutorial i .

$dns_address = 10.0.0.1 The Varlable
} . $dns_address
host dns { iS Used tO make

network eth0 { i

address $dns_address sure the Othe hOStS
} } ~ point to the right
. address.

host fish {
name_ server $dns_address

How does MLN create the virtual
machines based on a project file?

How It works

You write down the specification of a

project in an ascii file:

project tutorial

host big {
template ubuntu-desktop.ext3
memory 256M
vcpus 2
xen
free space 1000M
network eth0 {
address dhcp

}
users {
kyrre bNfjJIK/hJlfc
}
groups {
admin { kyrre }
}

And then you run:

mln build -f tutorial.mln

How It works

MLN picks the base for a virtual machine
based on the default or specified template

How It works

Next, MLN will make a copy of the template for each
new virtual machine.

MLN

_/ =

How It works

The new filesystem is resized according to its
configuration.

2 GB

How It works

MLN configures the filesystem according to
its specification

= Networking

MLN }

startup e—

Software

A

Users

How It works

The virtual machine is ready and can be started:

mln start -p tutorial

A word about templates ...

« Templates are ready-made filesystems
 MLN supports Debian and Ubuntu.

 RedHat and Busybox templates exist also

* Templates can contain installed software and
be used as virtual appliances like the blimp
template.

Examples and Demos

How to set up MLN/Xen/UML

1. Install Xen (optional)
Many have the most troubles at this point. (http://min.sf.net/files/xenify.sh)

2. Download MLN

wget http://mln.sf.net/files/mln-latest.tar.gz

3. Unpack and install

tar xzf mln-latest.tar.gz
cd mln-latest

./mln setup

cp mln /usr/local/bin

4. Download and register additional templates
MLN will install UML for you.

MLNs configuration

Three important folders:

* Projects - Where all the projects and virtual machine
filesystems are stored. It may grow very big.
Templates - Where MLN keeps all the templates
Files - MLN can copy files from this location into a
guest filesystem at compile-time

Look for the resulting configuration
in /etc/mln/mln.conf or ~/.mln

Example 1 - A simple network

__

Commands:

project examplel

mln build -f examplel.mln

host fish {
network eth0 {
switch lan
address 10.0.0.1
netmask 255.255.255.0

mln start -p examplel

}

host chips {

network eth0 { mln start -t screen -p examplel

switch lan
address 10.0.0.2
netmask 255.255.255.0

}

switch lan {}

~or

__

project example2

}
superclass common {
xen
template ubuntu-server.ext3
term screen
memory 64M
nameserver 128.39.89.10
network eth0 {
switch lan
netmask 255.255.255.0
}
}

i host gateway { i
i superclass common !
i network ethl { E
i address dhcp i
| } |
| network eth0 { i
! address 10.0.0.1

- |
! startup {

i iptables -t nat -A POSTROUTING -o ethl -j MASQUERADE i
i echo 1 > /proc/sys/net/ipv4/ip forward i
: } i

}
host backend {

superclass common

network eth0 {
address 10.0.0.2
gateway 10.0.0.1

}

}
switch lan { }

Example 2 -
Gateway and
backend

Example 3 - A large network

This is the setup from last
years course in firewalls
and intrusion detection
(MS004A). Each student
group will have one
business network to use
for assignements.

DMZ - 10.0.0."
255.255.255.0

server

128.39.73.10X

gateway

10.0.0.4

)

10.0.0.1

10.0.0.3

WLAN - 10.0.1.*

255.255.25;)/

10.0.1.2

laptop

10.0.1.1

()

—

10.0.0.2

choke

rufus

10.0.2.1

LAN - 10.0.2."

\$5.255.255.0

10.0.2.2

desktop

The design

A hierarchy of superclasses is
used to cut down the number of ! common

lines.

T N DN

™))

¢ servers \ ¢ clients ‘; rufus

£ N g

gateway

choke firewall server laptop workstation

groupi.min

group2.min

group3.min

N/

common.min

Next, the files are split up into
one project for each group. They
all include the same “base”.

Result

The project files for each tobal 1

group were quite small: Bovner = aronn:

$address = 128.39.73.102 !
$mountTarget = /home/group2/ms004a !

1
1 .
' #include common.mln

All of the groups e |
could be started
using this command:

mln -P /huldra/ms004a start -a

Example 4 - Managing across
several servers

i global ({ :

project exampled The keyword

L} : ‘

§ . service host can be
ot s s used to assignavmto a

service host shadowfax.vlab partiCL”ar sServer. A mln

network ethO0 { ,
, address dhcp . daemon needs to run on
| } | .
) . the other servers and its
host chips | min.conf modified.
term screen
service host huldra.vlab

network eth0 {
address dhcp

Example 4 - continued

On huldra.vlab: On shadowfax.vlab:

mln daemon

mln build -f example4

mln start -p exampled

Example 5 - Upgrading projects

A typical starting point: But you end up wanting this:
global { | i global {
project example5 i i project example5
} | L}
| host fish { § ' host fish { |
! free space 200M i : template ubuntu-server.ext3 !
template ubuntu—server.extBi i memory 128M
network eth0 { i i free space 1000M
address dhcp i i network ethO {
} i i address dhcp
} o }
___ : }

MLN has the ability to upgrade projects. It will show the
diff between the old and the new project and enact the
changes.

mln upgrade -f example5.mln

What we have not covered:

« How to build your own templates

« How to write plug-ins that extend the MLN language

* Performance

Interesting Future Projects

« Self-modifying / self-migrating virtual machines
* Interconnected grids of virtual machines across
multiple locations

« Hosting management as a product

« GUI front-ends to MLN

« Support more virtualization platforms

Thank You

Learn more on http://min.sf.net

Comments / Code / Suggestions are warmly welcomed

