
Virtualization made easy
with MLN

Kyrre Begnum - kyrre@iu.hio.no

README

• Introduction to virtualization (Xen, UML)
• Challenges we face often
• MLN, and how it may solve them

• Examples and demos

• Q & A

Break

Intended Audience

• Technicians and researchers who want to
learn how to use virtualization as a test-bed

• People who want to use virtualization but find

it difficult

• Students who wish to experiment with larger
networks on their own machines

Virtualization

• The ability to run one or more isolated
operating systems “on top” of another.
– Xen, User-Mode Linux, Vmware, Virtual

PC, Qemu

• The virtual machine has the ability to be

either isolated or a part of the LAN

UML and Xen
Both are two open source virtual machine platforms with
their own strengths

User-Mode Linux
• A specialized Linux kernel

runs as binary
• No root access required
• Flexible
• Slow compared to others

Xen
• More powerfull platform
• Can support different
operating systems
• Impressive performance
• Requires root access
• Complicated

Proposed benefits

• Financial savings

• Logistic benefits

• Live migration of virtual machines

• Security through partitioning

• More interesting student assignments

• Faster to set up

• Increased control and convenience

Challenges

• Requires a high technical skill level

• Monitoring and management

• Designing large networks of virtual
machines

• Filesystems need to be hand-configured

How can they be solved?

• Our approach
– A configuration language for virtual

machines

– Logical groups of virtual machines are
grouped into projects

– A tool that would parse the configurations
and act on the projects

MLN

• A management front-end for virtual
machines

• Supports both Xen and User-Mode
Linux

• Easy-to-use configuration language

• Used first time to create lab networks
for a Firewall/IDS course in 2004

MLN projects
A project can consist of more one or more virtual
machines and ethernet switches.
global {

project tutorial
}

switch lan { }

host fish {
network eth0 {

switch lan
}

}

host chips {
network eth0 {
 switch lan

 }
}

Here, two hosts - fish and
chips - are connected via a
switch called lan.

Configuration range

• Networking interfaces and switches
• Users and groups
• Startup commands
• Additional files that should be copied

into the filesystem

• Extra partitions to mount
• Number of CPUs to use (Xen)
• Filesystem backend
• Background console or xterm
• Virtualization platform
• Memory and filesystem size

Guest OS

Physical server

Language
• Superclasses
• Variables
• Plug-ins can extend the
language

Interface
• Start and stop entire projects
• Upgrade running projects
• Build across several servers

Superclasses
Superclasses allow for
configurations of hosts to be
consistent and to save
space

global {
project tutorial

}

superclass common {
memory 64M
free_space 1000M
template ubuntu-server.ext3
network eth0 {

switch lan
netmask 255.255.255.0

}
}

host fish {
superclass common
network eth0 {

address 10.0.0.1
}

}

host chips {
superclass common
network eth0 {

address 10.0.0.2
}

}

Variables

You can use variables to keep information consistent
across keywords

global {
project tutorial
$dns_address = 10.0.0.1

}

host dns {
network eth0 {

address $dns_address
}

}

host fish {
name_server $dns_address

}

The variable
$dns_address
is used to make
sure the othe hosts
point to the right
address.

How does MLN create the virtual
machines based on a project file?

How it works
You write down the specification of a
project in an ascii file:

global {
project tutorial

}

host big {
template ubuntu-desktop.ext3
memory 256M
vcpus 2
xen

 free_space 1000M
network eth0 {

address dhcp
}

users {
kyrre bNfjJIK/hJlfc

}
groups {

admin { kyrre }
}

}

And then you run:

mln build -f tutorial.mln

How it works
MLN picks the base for a virtual machine
based on the default or specified template

How it works
Next, MLN will make a copy of the template for each
new virtual machine.

How it works
The new filesystem is resized according to its
configuration.

How it works
MLN configures the filesystem according to
its specification

How it works
The virtual machine is ready and can be started:

mln start -p tutorial

A word about templates ...

• Templates are ready-made filesystems

• MLN supports Debian and Ubuntu.

• RedHat and Busybox templates exist also

• Templates can contain installed software and

be used as virtual appliances like the blimp

template.

Examples and Demos

How to set up MLN/Xen/UML

1. Install Xen (optional)
Many have the most troubles at this point. (http://mln.sf.net/files/xenify.sh)

2. Download MLN

3. Unpack and install

4. Download and register additional templates

wget http://mln.sf.net/files/mln-latest.tar.gz

tar xzf mln-latest.tar.gz
cd mln-latest
./mln setup
cp mln /usr/local/bin

MLN will install UML for you.

MLNs configuration

Three important folders:

• Projects - Where all the projects and virtual machine

filesystems are stored. It may grow very big.

•Templates - Where MLN keeps all the templates

•Files - MLN can copy files from this location into a

guest filesystem at compile-time

Look for the resulting configuration
in /etc/mln/mln.conf or ~/.mln

Example 1 - A simple network
global {

project example1
}

host fish {
network eth0 {

switch lan
address 10.0.0.1
netmask 255.255.255.0

}
}

host chips {
network eth0 {

switch lan
address 10.0.0.2
netmask 255.255.255.0

}
}

switch lan {}

Commands:

mln build -f example1.mln

mln start -p example1

mln start -t screen -p example1

or

Example 2 -
Gateway and

backend

global {
project example2

}
superclass common {

xen
template ubuntu-server.ext3
term screen
memory 64M
nameserver 128.39.89.10
network eth0 {

switch lan
netmask 255.255.255.0

}
}
host gateway {
 superclass common
 network eth1 {

address dhcp
 }
 network eth0 {

 address 10.0.0.1
 }
 startup {
 iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
 echo 1 > /proc/sys/net/ipv4/ip_forward
 }
}
host backend {

superclass common
network eth0 {

address 10.0.0.2
gateway 10.0.0.1

}
}
switch lan { }

Example 3 - A large network
This is the setup from last
years course in firewalls
and intrusion detection
(MS004A). Each student
group will have one
business network to use
for assignements.

The design
A hierarchy of superclasses is
used to cut down the number of
lines.

Next, the files are split up into
one project for each group. They
all include the same “base”.

Result

The project files for each
group were quite small:

global {
 project group2
 $owner = group2
 $address = 128.39.73.102
 $mountTarget = /home/group2/ms004a
}

#include common.mln
All of the groups
could be started
using this command:

mln -P /huldra/ms004a start -a

Example 4 - Managing across
several servers

global {
project example4

}

host fish {
 term screen
 service_host shadowfax.vlab
 network eth0 {

address dhcp
 }
}

host chips {
 term screen
 service_host huldra.vlab
 network eth0 {

address dhcp
 }
}

The keyword
service_host can be
used to assign a vm to a
particular server. A mln
daemon needs to run on
the other servers and its
mln.conf modified.

Example 4 - continued
On huldra.vlab:
mln daemon

On shadowfax.vlab:

mln build -f example4
mln start -p example4

Example 5 - Upgrading projects

global {
project example5

}

host fish {
free_space 200M
template ubuntu-server.ext3
network eth0 {

address dhcp
}

}

A typical starting point:

global {
project example5

}

host fish {
template ubuntu-server.ext3
memory 128M
free_space 1000M
network eth0 {

address dhcp
}

}

But you end up wanting this:

MLN has the ability to upgrade projects. It will show the
diff between the old and the new project and enact the
changes.

mln upgrade -f example5.mln

What we have not covered:

• How to build your own templates

• How to write plug-ins that extend the MLN language

• Performance

 Interesting Future Projects

• Self-modifying / self-migrating virtual machines

• Interconnected grids of virtual machines across

multiple locations

• Hosting management as a product

• GUI front-ends to MLN

• Support more virtualization platforms

Thank You

Learn more on http://mln.sf.net

Comments / Code / Suggestions are warmly welcomed

